Math 15 note Laplace transform

 ANNIHILATOR APPROACH

Given y''-4y'+5y=\sin(kx), P(D)=D^{2}-4D+5. The simplest annihilator of \sin(kx) is A(D)=D^{2}+k^{2}. The zeros of A(z)P(z) are \{2+i,2-i,ik,-ik\}, so the solution basis of A(D)P(D) is \{y_{1},y_{2},y_{3},y_{4}\}=\{e^{{(2+i)x}},e^{{(2-i)x}},e^{{ikx}},e^{{-ikx}}\}.

Setting y=c_{1}y_{1}+c_{2}y_{2}+c_{3}y_{3}+c_{4}y_{4} we find
{\begin{aligned}\sin(kx)&=P(D)y\\[8pt]&=P(D)(c_{1}y_{1}+c_{2}y_{2}+c_{3}y_{3}+c_{4}y_{4})\\[8pt]&=c_{1}P(D)y_{1}+c_{2}P(D)y_{2}+c_{3}P(D)y_{3}+c_{4}P(D)y_{4}\\[8pt]&=0+0+c_{3}(-k^{2}-4ik+5)y_{3}+c_{4}(-k^{2}+4ik+5)y_{4}\\[8pt]&=c_{3}(-k^{2}-4ik+5)(\cos(kx)+i\sin(kx))+c_{4}(-k^{2}+4ik+5)(\cos(kx)-i\sin(kx))\end{aligned}}
giving the system
i=(k^{2}+4ik-5)c_{3}+(-k^{2}+4ik+5)c_{4}
0=(k^{2}+4ik-5)c_{3}+(k^{2}-4ik-5)c_{4}
which has solutions
c_{3}={\frac  i{2(k^{2}+4ik-5)}}, c_{4}={\frac  i{2(-k^{2}+4ik+5)}}
giving the solution set
{\begin{aligned}y&=c_{1}y_{1}+c_{2}y_{2}+{\frac  i{2(k^{2}+4ik-5)}}y_{3}+{\frac  i{2(-k^{2}+4ik+5)}}y_{4}\\[8pt]&=c_{1}y_{1}+c_{2}y_{2}+{\frac  {4k\cos(kx)-(k^{2}-5)\sin(kx)}{(k^{2}+4ik-5)(k^{2}-4ik-5)}}\\[8pt]&=c_{1}y_{1}+c_{2}y_{2}+{\frac  {4k\cos(kx)+(5-k^{2})\sin(kx)}{k^{4}+6k^{2}+25}}.\end{aligned}}
y_{p}={\frac  {4k\cos(kx)+(5-k^{2})\sin(kx)}{k^{4}+6k^{2}+25}}  
.
y_{c}=e^{{2x}}(c_{1}\cos x+c_{2}\sin x)

 L_t[f(t)](s)=int_0^inftyf(t)e^(-st)dt,
Sufficient Conditions for Existence
f(t) is piecewise continuous on the interval [O, oo) and of exponetial order

F(s) ->0 as s -> oo

f L_t[f(t)](s) conditions
1 1/s
t 1/(s^2)
t^n (n!)/(s^(n+1)) n in Z>=0
e^(at) 1/(s-a)
cos(omegat) s/(s^2+omega^2) omega in R
sin(omegat) omega/(s^2+omega^2) s>|I[omega]|
cosh(omegat) s/(s^2-omega^2) s>|R[omega]|
sinh(omegat) omega/(s^2-omega^2) s>|I[omega]|
Properties of the unilateral Laplace transform
Time domain s domain Comment
Linearity af(t)+bg(t)\ aF(s)+bG(s)\ Can be proved using basic rules of integration.
Frequency-domain derivative tf(t)\ -F'(s)\ F is the first derivative of F with respect to s.
Frequency-domain general derivative t^{n}f(t)\ (-1)^{n}F^{(n)}(s)\ More general form, nth derivative of F(s).
Derivative f'(t)\ sF(s)-f(0)\ f is assumed to be a differentiable function, and its derivative is assumed to be of exponential type. This can then be obtained by integration by parts
Second derivative f''(t)\ s^{2}F(s)-sf(0)-f'(0)\ f is assumed twice differentiable and the second derivative to be of exponential type. Follows by applying the Differentiation property to f′(t).
General derivative f^{(n)}(t)\ s^{n}F(s)-\sum _{k=1}^{n}s^{n-k}f^{(k-1)}(0)\ f is assumed to be n-times differentiable, with nth derivative of exponential type. Follows by mathematical induction.
Frequency-domain integration {\frac {1}{t}}f(t)\ \int _{s}^{\infty }F(\sigma )\,d\sigma \ This is deduced using the nature of frequency differentiation and conditional convergence.
Time-domain integration \int _{0}^{t}f(\tau )\,d\tau =(u*f)(t) {1 \over s}F(s) u(t) is the Heaviside step function and (u ∗ f)(t) is the convolution of u(t) and f(t).
Frequency shifting e^{at}f(t)\ F(s-a)\
Time shifting f(t-a)u(t-a)\ e^{-as}F(s)\ u(t) is the Heaviside step function
Time scaling f(at) {\frac {1}{a}}F\left({s \over a}\right) a>0\
Multiplication f(t)g(t) {\frac {1}{2\pi i}}\lim _{T\to \infty }\int _{c-iT}^{c+iT}F(\sigma )G(s-\sigma )\,d\sigma \ The integration is done along the vertical line Re(σ) = c that lies entirely within the region of convergence of F.[15]
Convolution (f*g)(t)=\int _{0}^{t}f(\tau )g(t-\tau )\,d\tau F(s)\cdot G(s)\
Complex conjugation f^{*}(t) F^{*}(s^{*})
Cross-correlation f(t)\star g(t) F^{*}(-s^{*})\cdot G(s)
Periodic function f(t) {1 \over 1-e^{-Ts}}\int _{0}^{T}e^{-st}f(t)\,dt f(t) is a periodic function of period T so that f(t) = f(t + T), for all t ≥ 0. This is the result of the time shifting property and the geometric series.



https://www.youtube.com/watch?v=OiNh2DswFt4&list=PL96AE8D9C68FEB902&index=26