Cauchy–Euler equation & power series

Cauchy–Euler equation

x^{2}{\frac  {d^{2}y}{dx^{2}}}+ax{\frac  {dy}{dx}}+by=0.\,

  • Case #1: Two distinct roots, m1 and m2
  • Case #2: One real repeated root, m
  • Case #3: Complex roots, α ± βi
In case #1, the solution is given by:
y=c_{1}x^{{m_{{1}}}}+c_{2}x^{{m_{2}}}\,
In case #2, the solution is given by
y=c_{1}x^{m}\ln(x)+c_{2}x^{m}\,
To get to this solution, the method of reduction of order must be applied after having found one solution y = xm.
In case #3, the solution is given by:
y=c_{1}x^{\alpha }\cos(\beta \ln(x))+c_{2}x^{\alpha }\sin(\beta \ln(x))\,
\alpha ={\mathop  {{\rm {Re}}}}(m)\,
\beta ={\mathop  {{\rm {Im}}}}(m)\,
For c_{1},c_{2} ∈ ℝ .

List of Maclaurin series of some common functions[edit]

\sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}\,(x-a)^{n}

{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots }.
{\displaystyle {\begin{aligned}{\frac {1}{1-x}}&=\sum _{n=0}^{\infty }x^{n}\\{\frac {1}{(1-x)^{2}}}&=\sum _{n=1}^{\infty }nx^{n-1}\\{\frac {1}{(1-x)^{3}}}&=\sum _{n=2}^{\infty }{\frac {(n-1)n}{2}}x^{n-2}.\end{aligned}}}
 

{\displaystyle {\begin{aligned}\sin x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}&&=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-\cdots &&{\text{for all }}x\\[6pt]\cos x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}&&=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-\cdots &&{\text{for all }}x\\[6pt]\tan x&=\sum _{n=1}^{\infty }{\frac {B_{2n}(-4)^{n}\left(1-4^{n}\right)}{(2n)!}}x^{2n-1}&&=x+{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}+\cdots &&{\text{for }}|x|<{\frac {\pi }{2}}\\[6pt]\sec x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}}{(2n)!}}x^{2n}&&&&{\text{for }}|x|<{\frac {\pi }{2}}\\[6pt]\arcsin x&=\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&&&{\text{for }}|x|\leq 1\\[6pt]\arccos x&={\frac {\pi }{2}}-\arcsin x\\&={\frac {\pi }{2}}-\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&&&{\text{for }}|x|\leq 1\\[6pt]\arctan x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}x^{2n+1}&&&&{\text{for }}|x|\leq 1,\ x\neq \pm i\end{aligned}}}

Ratio test

The usual form of the test makes use of the limit
 

L=\lim _{{n\to \infty }}\left|{\frac  {a_{{n+1}}}{a_{n}}}\right|.

L=\lim _{{n\to \infty }}\left|{\frac  {a_{{n+1}}}{a_{n}}}\right|.
(1)
The ratio test states that:
  • if L < 1 then the series converges absolutely;
  • if L > 1 then the series is divergent;
  • if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.

Root test

\lim_{n\rightarrow\infty}\sqrt[n]{|a_n|},
converges then it equals C and may be used in the root test instead.
The root test states that:
  • if C < 1 then the series converges absolutely,
  • if C > 1 then the series diverges,
  • if C = 1 and the limit approaches strictly from above then the series diverges,
  • otherwise the test is inconclusive (the series may diverge, converge absolutely or converge conditionally).
There are some series for which C = 1 and the series converges, e.g.  

\textstyle \sum 1/{n^2}, and there are others for which C = 1 and the series diverges, e.g.  

\textstyle\sum 1/n.

Integral test for convergence

Consider an integer N and a non-negative, continuous function f defined on the unbounded interval [N, ∞), on which it is monotone decreasing. Then the infinite series
 

\sum _{{n=N}}^{\infty }f(n)

converges to a real number if and only if the improper integral
 

\int _{N}^{\infty }f(x)\,dx

is finite. In other words, if the integral diverges, then the series diverges as well.

Alternating series test

A series of the form
 

{\displaystyle \sum _{n=0}^{\infty }(-1)^{n}a_{n}=a_{0}-a_{1}+a_{2}-a_{3}+\cdots \!}

where either all an are positive or all an are negative, is called an alternating series.
The alternating series test then says: if  

a_{n} decreases monotonically and  

\lim _{{n\to \infty }}a_{n}=0 then the alternating series converges.

Variation of Parameters

Variation of Parameters

y1(t) and y2(t) are a fundamental set of solutions.

find a pair of functions, u1(t) and u2(t) so that

Here’s the assumption.  assume that whatever u1(t) and u2(t) are they will satisfy the following.
(3)

y^{(n)}(x) + \sum_{i=0}^{n-1} a_i(x) y^{(i)}(x) = b(x).\quad\quad {\rm (i)}
Let y_1(x), \ldots, y_n(x) be a fundamental system of solutions of the corresponding homogeneous equation
y^{(n)}(x) + \sum_{i=0}^{n-1} a_i(x) y^{(i)}(x) = 0.\quad\quad {\rm (ii)}
Then a particular solution to the non-homogeneous equation is given by
y_p(x) = \sum_{i=1}^{n} c_i(x) y_i(x)\quad\quad {\rm (iii)}

The particular solution to the non-homogeneous equation can then be written as
\sum_{i=1}^n y_i(x) \, \int \frac{W_i(x)}{W(x)}\ \mathrm dx.

Math 15 note Laplace transform

 ANNIHILATOR APPROACH

Given y''-4y'+5y=\sin(kx), P(D)=D^{2}-4D+5. The simplest annihilator of \sin(kx) is A(D)=D^{2}+k^{2}. The zeros of A(z)P(z) are \{2+i,2-i,ik,-ik\}, so the solution basis of A(D)P(D) is \{y_{1},y_{2},y_{3},y_{4}\}=\{e^{{(2+i)x}},e^{{(2-i)x}},e^{{ikx}},e^{{-ikx}}\}.

Setting y=c_{1}y_{1}+c_{2}y_{2}+c_{3}y_{3}+c_{4}y_{4} we find
{\begin{aligned}\sin(kx)&=P(D)y\\[8pt]&=P(D)(c_{1}y_{1}+c_{2}y_{2}+c_{3}y_{3}+c_{4}y_{4})\\[8pt]&=c_{1}P(D)y_{1}+c_{2}P(D)y_{2}+c_{3}P(D)y_{3}+c_{4}P(D)y_{4}\\[8pt]&=0+0+c_{3}(-k^{2}-4ik+5)y_{3}+c_{4}(-k^{2}+4ik+5)y_{4}\\[8pt]&=c_{3}(-k^{2}-4ik+5)(\cos(kx)+i\sin(kx))+c_{4}(-k^{2}+4ik+5)(\cos(kx)-i\sin(kx))\end{aligned}}
giving the system
i=(k^{2}+4ik-5)c_{3}+(-k^{2}+4ik+5)c_{4}
0=(k^{2}+4ik-5)c_{3}+(k^{2}-4ik-5)c_{4}
which has solutions
c_{3}={\frac  i{2(k^{2}+4ik-5)}}, c_{4}={\frac  i{2(-k^{2}+4ik+5)}}
giving the solution set
{\begin{aligned}y&=c_{1}y_{1}+c_{2}y_{2}+{\frac  i{2(k^{2}+4ik-5)}}y_{3}+{\frac  i{2(-k^{2}+4ik+5)}}y_{4}\\[8pt]&=c_{1}y_{1}+c_{2}y_{2}+{\frac  {4k\cos(kx)-(k^{2}-5)\sin(kx)}{(k^{2}+4ik-5)(k^{2}-4ik-5)}}\\[8pt]&=c_{1}y_{1}+c_{2}y_{2}+{\frac  {4k\cos(kx)+(5-k^{2})\sin(kx)}{k^{4}+6k^{2}+25}}.\end{aligned}}
y_{p}={\frac  {4k\cos(kx)+(5-k^{2})\sin(kx)}{k^{4}+6k^{2}+25}}  
.
y_{c}=e^{{2x}}(c_{1}\cos x+c_{2}\sin x)

 L_t[f(t)](s)=int_0^inftyf(t)e^(-st)dt,
Sufficient Conditions for Existence
f(t) is piecewise continuous on the interval [O, oo) and of exponetial order

F(s) ->0 as s -> oo

f L_t[f(t)](s) conditions
1 1/s
t 1/(s^2)
t^n (n!)/(s^(n+1)) n in Z>=0
e^(at) 1/(s-a)
cos(omegat) s/(s^2+omega^2) omega in R
sin(omegat) omega/(s^2+omega^2) s>|I[omega]|
cosh(omegat) s/(s^2-omega^2) s>|R[omega]|
sinh(omegat) omega/(s^2-omega^2) s>|I[omega]|
Properties of the unilateral Laplace transform
Time domain s domain Comment
Linearity af(t)+bg(t)\ aF(s)+bG(s)\ Can be proved using basic rules of integration.
Frequency-domain derivative tf(t)\ -F'(s)\ F is the first derivative of F with respect to s.
Frequency-domain general derivative t^{n}f(t)\ (-1)^{n}F^{(n)}(s)\ More general form, nth derivative of F(s).
Derivative f'(t)\ sF(s)-f(0)\ f is assumed to be a differentiable function, and its derivative is assumed to be of exponential type. This can then be obtained by integration by parts
Second derivative f''(t)\ s^{2}F(s)-sf(0)-f'(0)\ f is assumed twice differentiable and the second derivative to be of exponential type. Follows by applying the Differentiation property to f′(t).
General derivative f^{(n)}(t)\ s^{n}F(s)-\sum _{k=1}^{n}s^{n-k}f^{(k-1)}(0)\ f is assumed to be n-times differentiable, with nth derivative of exponential type. Follows by mathematical induction.
Frequency-domain integration {\frac {1}{t}}f(t)\ \int _{s}^{\infty }F(\sigma )\,d\sigma \ This is deduced using the nature of frequency differentiation and conditional convergence.
Time-domain integration \int _{0}^{t}f(\tau )\,d\tau =(u*f)(t) {1 \over s}F(s) u(t) is the Heaviside step function and (u ∗ f)(t) is the convolution of u(t) and f(t).
Frequency shifting e^{at}f(t)\ F(s-a)\
Time shifting f(t-a)u(t-a)\ e^{-as}F(s)\ u(t) is the Heaviside step function
Time scaling f(at) {\frac {1}{a}}F\left({s \over a}\right) a>0\
Multiplication f(t)g(t) {\frac {1}{2\pi i}}\lim _{T\to \infty }\int _{c-iT}^{c+iT}F(\sigma )G(s-\sigma )\,d\sigma \ The integration is done along the vertical line Re(σ) = c that lies entirely within the region of convergence of F.[15]
Convolution (f*g)(t)=\int _{0}^{t}f(\tau )g(t-\tau )\,d\tau F(s)\cdot G(s)\
Complex conjugation f^{*}(t) F^{*}(s^{*})
Cross-correlation f(t)\star g(t) F^{*}(-s^{*})\cdot G(s)
Periodic function f(t) {1 \over 1-e^{-Ts}}\int _{0}^{T}e^{-st}f(t)\,dt f(t) is a periodic function of period T so that f(t) = f(t + T), for all t ≥ 0. This is the result of the time shifting property and the geometric series.



https://www.youtube.com/watch?v=OiNh2DswFt4&list=PL96AE8D9C68FEB902&index=26

Math 15 notes

 

existence of a unique solution

Consider the following IVP.
                                              
If f(t,y) and  are continuous functions in some rectangle ,  containing the point  (to, yo) then there is a unique solution to the IVP in some interval to  h < t < to + h that is contained in .

First order homogeneous equation:

A first-order ordinary differential equation in the form:
M(x,y)\,dx+N(x,y)\,dy=0

is a homogeneous type if both functions M(x, y) and N(x, y) are homogeneous functions of the same degree n.[1] That is, multiplying each variable by a parameter  \lambda , we find

M(\lambda x, \lambda y) = \lambda^n M(x,y)\,     and     

N(\lambda x,\lambda y)=\lambda ^{n}N(x,y)\,.

Solution method
Introduce the change of variables 

y=ux;

Exact differential equation

Given a simply connected and open subset D of R2 and two functions I and J which are continuous on D then an implicit first-order ordinary differential equation of the form
I(x, y)\, \mathrm{d}x + J(x, y)\, \mathrm{d}y = 0, \,\!

is called an exact differential equation if there exists a continuously differentiable function F, called the potential function, so that
\frac{\partial F}{\partial x} = I

and
\frac{\partial F}{\partial y} = J.

4191727b-c14e-4f5b-b088-2c4d9392f49f.png

Solutions to exact differential equation

685adf38-067e-4336-a92e-9e39b8dca6bc (2).png

c98ed899-3827-4336-8b43-43092414035e.png

substitute g(y) into

685adf38-067e-4336-a92e-9e39b8dca6bc (1).png

 linear Equation and integrating factor

11d235ba-8b9e-4d88-a514-31909562251d.png

Proof:

y'+P(x)y=Q(x)

 M(x), integrating factor

M(x)=e^{{\int _{{s_{0}}}^{{x}}P(s)ds}}

then:
{\begin{aligned}(1)\qquad &M(x){\underset  {{\text{partial derivative}}}{(\underbrace {y'+P(x)y})}}\\(2)\qquad &M(x)y'+M(x)P(x)y\\(3)\qquad &{\underset  {{\text{total derivative}}}{\underbrace {M(x)y'+M'(x)y}}}\end{aligned}}

Going from step 2 to step 3 requires that M(x)P(x)=M'(x),

 

{\displaystyle {\begin{aligned}(4)\qquad &M(x)P(x)=M'(x)\\(5)\qquad &P(x)={\frac {M'(x)}{M(x)}}\\(6)\qquad &\int _{s_{0}}^{x}P(s)ds=\ln M(x)\\(7)\qquad &e^{\int _{s_{0}}^{x}P(s)ds}=M(x)\end{aligned}}}

Solution:

y=e^{{-\int _{{s_{0}}}^{{x}}P(s)ds}}\int _{{t_{0}}}^{x}Q(t)e^{{\int _{{s_{0}}}^{{t}}P(s)ds}}dt+Ce^{{-\int _{{s_{0}}}^{{x}}P(s)ds}}
5613d838-cf74-4123-a0e0-51e023cdfc9a.png



Equations of Bernoulli,Ricatti, and Clairaut

bcb0a074-a863-4c69-b5cc-31d59bd6dd47.png

7f3e8765-a7d3-426b-a1e1-712d2eec20d9.png

cb841b81-2f14-48e9-860c-e2631f9aa265.png

8d998b7c-44c9-4183-aa19-ed843bfc0e8e.png

 

0f122093-0278-4409-a586-6acfc0576f64.png509ffddb-ce0a-40f6-8de4-914aac996f7f.pngced184a5-9e8e-404c-89fa-7ff3ffa63179.png

e5d179ba-c4f1-40e8-9859-233bb716d6ef.pngf0632bed-c774-46b6-a4c1-9eee57088121.png

Linear dependence:

7b1f91b1-be89-4fa7-b43c-376350d16986.png

b1eab8c5-68f2-4d0a-a83f-2093fcbd9ca3.png

w=0 => Linearly Independent

74cb030b-568f-4b3c-9c21-a7dfdfd3833a.png

linearly dependent => w=0

Reduction of order
b284e0bc-9cb7-4fcf-a900-e28c637f5883.png

2079dc4c-a757-49ec-bc98-3a3f49bfe905.png

d7cd051b-3f13-4c77-ab8b-d378196a3122.png
a5d3def9-7251-4ca3-8dc2-c222e65abfed.png

440c9571-4e53-4c94-864c-13982d816357.png

Solution:

5d19d964-7048-4991-a9fc-b03968280fac.png

HOMOGENEOUS LINEAR EQUATIONS
WITH CONSTANT COEFFICIENTS

a0229ca6-e51a-458f-b73d-d7323b9c467b.png

Two distinct real roots

193e1522-b389-446b-b4d5-1d2fe8669246.png

Two complex conjugate roots
5ed14faa-7aa0-4efe-9a2f-7784053acc2f (1).png

One repeated real root

3d555bc8-519c-4e7f-bf5e-3712446fe85c.png

Annihilator Operator

3ea6cda9-efc9-481c-aecb-b9f9b7fdfcd2.png

c76223ac-2fb1-44a5-a9ed-f1eb40ca50b9.png